China manufacturer Citic Hic Large Wheel Gear Girth Gear Spur Gear top gear

Product Description

Citic Hic Large Wheel Gear Girth Gear Spur Gear

Product Description

Girth Gears: Rotary kiln Girth Gear,ball mill Girth Gear

Girth Gears offered find extensive application in different industry sectors including in sponge iron plants, steel & cement industry, mining industry, wind mills as well as in other industry sectors. These are made available in module range of 10 Module to 70 Module and in minimum diameters of 100 mm to 15000 mm. Further, these comprise maximum weight of 70 MT single pieces. Here the range of hardened & ground gear boxes/gears comprise Worm gear boxes, Helical / Double helical gears/gearboxes, Helical-Bevel gearboxes, Planetary Gearboxes and others.

ZTIC Gear Cutting Machines include:
Ø16m CNC Hobbing Machine
Ø12m Gear Cutting Machine (Switzerland)
Ø10m Hobbing Machine (Germany)
Ø4m CNC High Speed Hobbing Machine (Germany)
Ø1.6m Horizontal CHC Hobbing Machine (Germany)
Ø5m CNC Profile Gear Grinding Machine (Germany)
Ø2.8m CNC Profile Gear Grinding Machine (Germany)
Ø1.25m CNC Profile Gear Grinding Machine (Germany)
Ø1m CNC Profile Gear Grinding Machine (Germany)
Ø0.8m CNC Profile Gear Grinding Machine (Germany)

Automatic positioner
Module Range:  10 Module to 70 Module.
Diameter : Min 100 mm to16000 mm.
Weight : Max 120 MT single piece.
Hardened & Ground Gear Boxes/Gears:
Worm gear boxes
Helical / Double helical gears/gearboxes
Helical-Bevel gearboxes
Planetary Gearboxes
Hardened & Ground Helical- bevel gears & Spiral-bevels gears/gearboxes.
Rack & Pinions
Ratings:Min 3 hp to  Max 1400 hp
Splash / Forced lubrication type
Send Enquiry
With more than 1000 girth gears sold over the world CHINAMFG Gear is a leading supplier in the cement and mineral industry. And as member of AGMA (American Gear Manufacturers Association), we do actively take part in defining the standard for gear rating calculations and service factors. 
We provide girth gears in 3 different designs

Fabricated steel
– forged ring
– rolled plate
Cast steel 
Ductile (Nodular) cast iron  
Fabricated gears became more common in the past and are constructed with forged steel gear rim materials and electro welded body structure. The rings are manufactured from a whole block of high resistance alloy steel. After the rough machining of the ring, we carry out hardening and tempering heat treatment in order to improve the mechanical characteristic and therefore its relevant performance.  

Avantages of fabricated girth gears
The forged material structure excludes the risk of inclusions
Structure defects like gas holes, micro shrinkage, pin holes, hot tears, sand and slag inclusions are avoided
Hence, repair welding of the body structure and e.g. grinding of toothed areas is not required.
The fabricated manufacturing procedure excludes the need for patterns and risers
Rim material has higher hardness and higher strength than the material used for the underlying structure (i.e. web, gussets)
These features will reduce the lead time and costs. Fabricated manufacturing ensures a fast delivery.
This is especially beneficial in an emergency situation, where the existing gear rim is suffering from damage   

Features

External teeth 

Maximum diameter: 16000 mm 
Toothed face width: 1700 mm 
Maximum module: 45 by hob 
Maximum module: 65 gear finishing cutter
Internal teeth 
Maximum Diameter: 6500 mm 
Maximum module: 25.4 
Toothed face width: 400 mm
Forging material process 
Forging 
Final rolling 
Furnace cooling 
Control on production 
Water quenching 
Hardness testing 
Rough machining 
Ultrasonic testing and dimensional inspection 
Final inspection certification

Standards/Certificates 
UNI EN ISO 
AWS 
ASTM 
ASME 
DIN 
Applications 
Our girth gears are applied in the cement and minerals industries: 
Various types of horizontal mills 
Rotary dryers 
Rotary kilns 
Any other large gear ring application
Pinions
ZTIC Gear invested in significant resources and achieved many innovations with pinions. The right combination of material, hardness and finishing between pinion and gear is crucial for a long lifetime of the installed equipment. We design and manufacture pinions to match every customers need, no matter how unique the situation might be. 

Pinion design
bored
solid on shaft / integral
self aligned
spur, helical or double helical
Materialization
forged alloyed steel
through hardened, case hardened or quenched and tempered
Spur, helical or double helical
carburized
induction
nitrided
Characteristics
gear cutting with hobs
the gear quality is checked by profile tester
tooth flank modification
– profile correction 
– lead correction (straight/barrel)
designs /ratios according to ISO-DIN-A.G.M.A.
FEM/FEA simulation software
Standards/Certificates
UNI EN ISO
AWS
ASTM
ASME
DIN
Applications 
Our pinions are applied in the cement and minerals industries:
Ball – mills
ROD – mills
Semi Autogeneous Grind (SAG)
Rotary kilns/coolers/dryers
Advantages
One Source
Original Equipment Manufacture (OEM) Technical Drawings
Gearing technical expertise for kilns and grinding mills
State of the art manufacturing facilities and quality
Global sales and service support
Rotary  Kiln Girth Gears
We are leading supplier the Kiln Girth Gears for the various plants as listed below.
Sponge Iron Plants  50TPD 100TPD 300TPD350TPD,500TPD,1000TPD
Cement plants as per customer requirement
Gears for phosphate mines, Alumina plant, kaolin-bentonite
Gear Cutting Capacity:
100mm diameter to 16000mm diameter
10Module to 70Module
The Kiln girth gears are available mainly in bi-part, 4 parts, 8 parts or multi segments as per the requirement and suitability with the application of gear.
 
In the field of grinding mill components, We supply mill heads,feed inlet,grinding roller,cement kiln riding ring, casting gears, shaft block .Also we supply mill shell of welding structures and fabrications.
 
Quality assurance documents
The following reports are to be submitted to Quality Assurance:
a. Chemistry report
b. Physical report
c. Heat treatment documents
CITIC HMC  Q/HM 973.2-2007 Specification for Steel Castings for Grinding Mills
d. Ultrasonic inspection report (before and after repairs)
e. Magnetic particle inspection report (before and after repairs)
f. Dimensional report
g. Weld repair maps
h. Weld procedures and Procedure qualification record
i. Welder qualification
j. Nondestructive testing inspector qualification

Product Parameters

 

Item Structural features Processing measure Test content
Girth Gear (1)GS42CrMo4Alloy Steel (corporate proprietary standards)
HB 220~240
(2)semi-structured, Y-Spoke 
(3)Helical 
(4) reasonable sealing and alignment structure of alloy steel (corporate proprietary standards)
(1) outer steel refining (R-H argon and vacuum treatment) 
(2) proprietary cold mold hanging sand technology to ensure the casting, the teeth dense 
(3) normalizing (proprietary technology) to ensure that the tooth surface hardness 
After
(4)rough hobbing, release time, repair the joint surface, then fine roll 
(5) proprietary homemade hob fine hobbing
(1)castings mechanical properties and chemical composition (internal standard) 
(2) roughing after sonic testing 
(3)semi-finishing, finishing after ultrasonic testing and magnetic particle inspection 
(4) tooth surface magnetic particle inspection, hardness test 
(5)tooth tolerance check 
(6) the factory assembly load test to check the accuracy of the size of gear

 The technical requirements of a large CHINAMFG Gear ring:
1) is pretreated before normalizing surface hardening treatment, the hardness should HB210 ~ 250; mechanical performance are the ultimate strength Rb \ 690MPa, yield stress Rs \ 490MPa, elongation D5 \ 11%, reduction of area W \ 25% , impact toughness Ak \ 30J; teeth induction hardened, hardness HRC50 ~ 55; effective hardened layer depth \ 3 ~ 5mm.
2) overall ultrasonic flaw detection, internal quality should meet 2 requirements GB7233-87 standard requirements; tooth and fillet magnetic particle inspection, quality should meet 2 requirements GB/T9444-88 standards.
3) Note the casting is not rounded R5 ~ R10.
4) Tooth chamfer at both ends and 1 45b.5) by 2 and a half ring gear tooth width of each ring coupling along the edge of a whole ring made with high strength bolts, combined with the tooth surface must be at the bottom center.

2 large ring gear manufacturing process
2.1 of rough
Steel casting blank is provided by CITIC Heavy Machinery Co., Ltd. Heavy Forging plant, run by GB11352-89 standard specifies requirements for modeling according to the casting process, smelting, casting, hit boxes, cleaning, dressing castings;. During inspection and acceptance by the drawings and Technical requirements for steel blank
Checks, according JB/T6402-92 standards issued after acceptance
Down procedure.
2.2 roughing
Crossed by drawing and stay out allowance, alignment, connection, processing both inside and outside the circle, combining face milling, drilling and other processes.
2.3 Exploration injury
Overall ultrasonic flaw detection, internal quality should meet the 2 requirements of GB7233-87 standards.
2.4 normalizing pretreatment
Semi-ring pairs normalizing and tempering treatment, provide a good organization for subsequent surface hardening; press drawings deformation of the half ring gear inspection after heat treatment.
2.5 Machining
First 2 and a half ring is made with high strength bolts connecting the ring as a whole, the overall process by drawing a circle Quannei Wai teeth and upper and lower end, and then drawing and machining milling process requirements.
2.6 Elimination of processing stress
The overall ring annealed to eliminate stress.
2.7 overall ring surface hardening
IF along the alveolar tooth surface induction hardening, hardness HRC50 ~ 55, effective hardened layer depth \ 3 ~ 5mm.
2.8 Final inspection
First, the detection frequency quenching, the hardness after tempering ring gear cogging meets the requirements of the drawings; secondly, to detect whether the maximum outer diameter larger size D6944 as the deformation \ 3mm, the mechanical correction required until qualified; Thirdly, tooth and fillet magnetic particle inspection, quality should meet 2 requirements GB/T9444-88 standard requirements; Finally, according to the drawings and technical requirements for final inspection.
 

Company Profile

After-sales Service: Online Supporting Service
Warranty: 12 Months
Gear Cutting Machines: 16m CNC Hobbing Machine
Applications: Applied in The Cement and Minerals Industries: Va
Standards/Certificates: Uni En ISO Aws ASTM Asme DIN
Weight: Max 120 Mt Single Piece
Customization:
Available

|

Customized Request

spur gear

Can spur gears be used in automotive applications?

Yes, spur gears can be used in automotive applications. Here’s a detailed explanation:

Spur gears are one of the simplest and most commonly used types of gears. They consist of cylindrical teeth that are parallel to the gear axis and mesh with each other to transmit power and motion. While other gear types like helical gears or bevel gears are often preferred in certain automotive applications, spur gears still find their place in various automotive systems and components.

1. Transmissions:

Spur gears are commonly found in manual transmissions, especially in lower gears. They are used to achieve a direct and efficient power transfer between the engine and the wheels. Spur gears in transmissions are designed to handle high torque loads and provide reliable performance.

2. Differential:

In automotive differentials, which distribute power between the wheels while allowing them to rotate at different speeds, spur gears are often employed. They are used in the differential gear train to transfer torque from the driveshaft to the wheels. The simplicity and robustness of spur gears make them suitable for this application.

3. Starter Motors:

Spur gears are commonly used in starter motors to crank the engine when starting a vehicle. They provide high torque and efficient power transmission to rotate the engine’s crankshaft and initiate the combustion process. Starter motor spur gears are designed to handle the initial load and engage smoothly with the engine’s flywheel.

4. Timing Systems:

In automotive timing systems, where precise synchronization of engine components is crucial, spur gears can be used. They are employed in timing belts or chains to drive the camshafts, ensuring proper valve timing and engine performance. Spur gears in timing systems contribute to accurate and reliable engine operation.

5. Accessories and Auxiliary Components:

Spur gears are also utilized in various automotive accessories and auxiliary components. They can be found in power window mechanisms, windshield wipers, power steering systems, and other mechanisms that require controlled and synchronized motion. Spur gears provide cost-effective and efficient power transmission for these applications.

It’s important to note that while spur gears have their advantages, they also have certain limitations. They can generate more noise and vibration compared to gears with helical or bevel tooth profiles. Additionally, spur gears are not as suitable for high-speed or high-torque applications as other gear types.

Overall, spur gears have a significant presence in automotive applications, particularly in manual transmissions, differentials, starter motors, timing systems, and various auxiliary components. Their simplicity, reliability, and cost-effectiveness make them a viable choice for specific automotive gear applications.

spur gear

Are spur gears suitable for high-torque applications?

Spur gears are commonly used in a wide range of applications, including those involving high-torque requirements. However, their suitability for high-torque applications depends on various factors. Here’s a detailed explanation:

Spur gears are designed to transmit power and torque between parallel shafts. They have straight teeth that engage fully, providing efficient power transfer. The suitability of spur gears for high-torque applications can be evaluated based on the following considerations:

  • Load Distribution: Spur gears distribute the transmitted load over a larger contact area compared to other gear types. This characteristic allows them to handle higher torque loads effectively.
  • Size and Diameter: The size and diameter of the spur gears play a crucial role in their ability to handle high torque. Larger gear diameters provide increased torque capacity due to the longer lever arm and larger contact area between the gear teeth.
  • Material Selection: Choosing the appropriate material for the spur gears is essential for high-torque applications. Strong and durable materials, such as hardened steel or alloy steels, are commonly used to ensure the gears can withstand the high stresses and torque loads without deformation or failure.
  • Gear Design: Proper gear design considerations, such as tooth profile, module or pitch, and the number of teeth, can impact the torque-carrying capacity of spur gears. Design parameters should be optimized to ensure sufficient tooth strength and minimize the risk of tooth breakage or excessive wear.
  • Lubrication and Maintenance: Adequate lubrication is critical for reducing friction, wear, and heat generation in high-torque spur gear applications. Regular maintenance, including lubricant replacement and gear inspections, can help identify and address any issues that may affect the gear’s torque-handling capabilities.
  • Supporting Components: The overall system design, including the selection of bearings, shafts, and housing, should be considered to ensure proper support and alignment of the spur gears. Well-designed supporting components contribute to the overall torque capacity of the system.

While spur gears can handle high torque, it’s important to note that there are limitations to their torque capacity. Factors such as gear size, material strength, tooth design, and operating conditions can affect the maximum torque the gears can safely transmit without failure.

In some cases, other gear types such as helical gears or bevel gears may be more suitable for specific high-torque applications. These gears offer advantages such as increased load-carrying capacity, improved torque transfer efficiency, and reduced noise and vibration levels.

Ultimately, the suitability of spur gears for high-torque applications should be evaluated based on the specific requirements, operating conditions, and industry standards applicable to the particular application.

spur gear

What industries commonly use spur gears?

Spur gears find wide applications across various industries due to their simplicity, efficiency, and versatility. Here’s a detailed explanation of the industries that commonly use spur gears:

  • Automotive Industry: The automotive industry extensively utilizes spur gears in various components and systems. They are commonly found in gearboxes, differentials, transmission systems, and engine timing mechanisms. Spur gears play a crucial role in transferring power and rotational motion between the engine, wheels, and other drivetrain components.
  • Machinery and Manufacturing: Spur gears are widely employed in machinery and manufacturing equipment across different sectors. They are used in conveyor systems, machine tools, printing presses, textile machinery, packaging machinery, and a variety of industrial applications. Spur gears facilitate power transmission and motion control in these systems.
  • Power Generation: Spur gears are essential in power generation systems such as wind turbines, hydroelectric turbines, and steam turbines. They are used to transmit power from the rotor to the generator, converting the rotational motion of the turbine blades into electricity. Spur gears enable efficient power transfer in these renewable energy systems.
  • Robotics and Automation: Spur gears have significant applications in robotics and automation systems. They are used in robotic joints, actuators, and drive systems to control motion and transmit torque accurately and efficiently. Spur gears enable precise movement and force transmission in robotic applications.
  • Aerospace and Aviation: The aerospace and aviation industries utilize spur gears in various applications. They can be found in aircraft landing gear systems, engine components, flight control systems, auxiliary power units (APUs), and other critical equipment. Spur gears play a vital role in transmitting power and controlling movement in these aerospace systems.
  • Marine and Shipbuilding: Spur gears are commonly used in the marine and shipbuilding industry. They find applications in propulsion systems, winches, steering mechanisms, and other equipment that require torque transmission and speed control. Spur gears enable efficient power transfer and maneuverability in marine vessels.
  • Appliances and Household Equipment: Spur gears are present in numerous household appliances and equipment. They are used in washing machines, dishwashers, mixers, food processors, garage door openers, and many other appliances that require rotational motion and power transmission. Spur gears facilitate the efficient operation of these household devices.
  • Power Tools: Spur gears are widely utilized in power tools such as drills, saws, grinders, and sanders. They enable the transmission of power from the motor to the tool’s cutting or grinding components, ensuring efficient and controlled operation. Spur gears contribute to the functionality and performance of power tools.
  • Medical Equipment: Spur gears are used in various medical devices and equipment. They can be found in imaging systems, surgical robots, medical pumps, and other applications that require precise motion control and torque transmission. Spur gears play a critical role in the functioning of medical equipment.
  • Clocks and Watches: Spur gears are a fundamental component in mechanical clocks and watches. They are responsible for accurate timekeeping by transferring rotational motion from the mainspring or oscillator to the hour, minute, and second hands. Spur gears have historical significance in timekeeping mechanisms.

These are just a few examples of the industries where spur gears are commonly used. Their simplicity, reliability, and efficiency make them a popular choice in a wide range of applications, enabling power transmission, motion control, and precise operation in diverse industrial sectors.

China manufacturer Citic Hic Large Wheel Gear Girth Gear Spur Gear top gearChina manufacturer Citic Hic Large Wheel Gear Girth Gear Spur Gear top gear
editor by CX 2023-09-12